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Prolongation structures and Backlund transformations for the 
matrix Korteweg-de Vries and the Boomeron equation 

E M de Jager and S Spannenburg 
Mathematical Institute, University of Amsterdam, Roetersstraat 15, 1018 W B Amsterdam, 
The Netherlands 

Received 24 January 1985 

Abstract. Prolongation structures are determined for the matrix Korteweg-de Vries and 
the Boomeron equation by using the integrability condition for a linear system of first-order 
equations. Symmetries of these prolongation structures are used to derive Backlund 
transformations and to construct solutions for both equations. 

1. Introduction 

It is well known that the Kdv equation U, + m u ,  + Pu,,, = 0 does possess the Lie algebra 
SL(2,R) as a prolongation structure. This was first discovered by Wahlquist and 
Estabrook (1973), who obtained this prolongation structure, by using the theory of 
exterior differential systems, as a subalgebra of a more general prolongation. Chern- 
Peng (1979) discovered that this prolongation structure followed in a natural way from 
the Maurer-Cartan equations of the SL(2, R) algebra. From the SL(2, R)-prolongation 
structure it is possible to derive a Backlund transformation and thus a method for 
constructing solutions for the Kdv equation. 

The Backlund transformation and the explicit construction of solutions can, as we 
shall show, easily be generalised to systems of equations, i.e. equations in matrix form. 
In this paper we restrict ourselves to the Kdv equation in matrix form and to the 
Boomeron equation, but it will be clear that our method can be used for other systems 
of equations as well. The matrix Kdv equation has been used in investigations concern- 
ing Jupiter’s red spot (Redekopp et a1 1978); furthermore the components may be 
used to construct solutions of the scalar Kdv equation or other equations of physical 
interest (Wadati 1980). 

In order to make our generalisation transparent we treat in § 2 the scalar case; it 
will appear that a simplification of the construction of a well known Backlund transfor- 
mation is possible. In § 3 we generalise the scalar case to systems of equations of the 
Kdv type and in 0 4 we treat generalisations of another type among which is the 
Boomeron equation. 

2. The scalar case 

2.1. The linear prolongation structure SL(2, R) 
We consider the system of equations in R2 with coordinates (x, t )  

( Y I )  Y2 x = A ( Y I ) ,  Y2 ( Y I )  Y2 I = B ( Y I )  Y2 
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where 

y ,  = y l ( x ,  2 )  and yz = y 2 ( x ,  t )  and subscripts denote differentiation. 
The compatibility condition: ($;),, = ($;),, gives 

- A , + B , = [ A ,  B ]  

where [A, B ]  = AB - BA is the commutator of A and B. (2.2)  leads to 

- A ,  + a ,  = uc -Ab,  -u l+b,=2Ab-2ua,  

-r ,+cX=-2Ac+2ra.  (2.3a, b, c )  

With the special choice A ( x ,  t )  = A = constant and r ( x ,  t )  = 1 the set of equations (2 .3)  
becomes 

a, = uc - b, U, = 2ua - 2 Ab + b,, c, = -2Ac+2a 

or 

a = A c + f c ,  ( 2 . 4 ~ )  

b = uc - Ac, -$c,, ( 2 . 4 6 )  

U, = ~ U C ,  + U,C + ~ A ' c ,  -;c,,,. ( 2 . 4 ~ )  

I n  order to eliminate A from ( 2 . 4 ~ )  we choose c = A' -;U which gives the Kdv equation 

U, = -&U, + :U,,,. (2 .5)  

Finally substituting (2 .4)  into (2.1) we obtain the result that the system 

is completely integrable when U satisfies (2 .5) .  In other words, (2 .6)  defines a linear 
prolongation of (2.5). 

If one substitutes in ( 2 . 4 ~ )  for c a polynomial of degree n in A', one obtains the 
result that the so-called Kdv equation of order n provides an integrability condition 
for the pertaining system (2 .1)  (Chern-Peng 1979). 

2.2. Quadratic prolongation and Backlund transformation 

From (2 .6)  we can (at least locally) derive another prolongation involving only one 
potential by substituting y = y ,  y ; ' .  This gives 

y ,  = - y 2  + 2Ay + U 
Y , = ( ~ u  - A 2 ) y 2 + ( 2 A 3 - A u  - ; u , ) y + A 2 u  - ~ u ~ + ~ A u , + ~ u , , .  (2 .7)  

From these equations we eliminate U, U, and U,, and we find that y = y ( x ,  t )  satisfies 

(2 .8)  = -2 2~ 2 yx + fyx,, + 3Ayy, 
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which is in fact a A dependent modified K d v  equation. Miura (1974) discovered that 
there is a close connection between the K d v  and the modified K d v  equation. We show 
that a similar relation holds also for the A dependent modified K d v  equation, by proving 
the next theorem. 

Theorem 1 .  Supposey(x, t)isasolutionof(2,8),then u ( x ,  t)definedbyu =y,+y2-2Ay 
satisfies the K d v  equation (2.5). 

Proof: If U = y, + y 2  - 2Ay, then 

U, = y,, + 2yy, - 2Ay, = (a/dx + 2y - 2A)y, 

and by a direct calculation it follows from (2.8) and (2.7) that U satisfies (2.5). 

This theorem together with the prolongation condition makes it possible to derive a 
Backlund transformation for the K d v  equation. First, we notice that the substitution 
y = z + A in (2.8) gives an odd equation in z of the form: 

(2.9) 3 2  3 2  
Z,  = -TZ Z, +$z,,, + T A  z,. 

Since (2.9) is odd it possesses with every solution z another solution -z ,  and from 
this it follows that (2.8) possesses with every solution y another solution -y+2A. 

Now, let U be a solution of the K d v  equation (2.5), then by the prolongation 
condition, (2.7) is completely integrable and y satisfies (2.8). But then -y+2A also 
satisfies (2.8) and by using theorem 1 we find that U ’ =  u’(x, t )  defined by 

U ’ =  ( - y  + 2 A ) ,  + ( - ~ + 2 A ) ~ - 2 A ( - y +  2 A )  

or 
U ’ =  -y, + y 2  - 2Ay 

is another solution of the K d v  equation. 
Substituting U = y, + y 2  - 2Ay we find a Backlund transformation 

U ’ =  -U + 2y2 -4Ay. (2.10) 

This, in fact, is the same Backlund transformation as that found by Wahlquist and 
Estabrook (1973); however, we were able to find it without, as they stated, a tedious 
calculation. Summarising we have obtained the theorem 

Theorem 2. Whenever U is a solution of the KdV equation (2.5) and y a solution of 
the system (2.7), then 

U ’ =  -U + 2y2 -4A.v 

is also a solution of the K d v  equation (2.5). 

Inserting U = 0 yields for real values of A :  y - A  = A tanh A ( x  + A 2 t  + &) or y - A = 

A coth A(x+ A 2 t  + &,I, where & is an integration constant. Using finally (2.10) we 
obtain the well known stationary solutions 

U ’  = -2A2[sech A (x  + A 2 t  + &)I2 (2.11) 

U ’ =  +2A2[cosech A(x+A2t+(bo)]’. (2.12) 

resp. 
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3. The matrix case 

3.1. Linear prolongation structure for the matrix K d V  equation 

We consider the system 

where 

U, R, a, 6, c, y ,  z are 2 x 2  matrix functions defined on R2 with coordinates (x, t )  and 
I is the unit 2 x 2  matrix and A a constant. It is clear that (3 .1 )  is a generalisation of 
the system (2 .1 )  with A(x,  t ) =  A =constant. 

As in the scalar case the compatibility condition 

gives 

B, - A ,  = [ A ,  B].  

Choosing R = I we obtain 

Bx = (p), -a ,  A, = (o$) 
and 

(3 .2)  

(3 .3)  

2a - 2Ac 

Therefore we obtain for the compatibility condition the set of equations 

a, = Cic - b, b X - U , = 2 A b -  U a - a U ,  (3.4a, b )  
C, = 2a - 2Ac, (3.4c, d )  -a ,  = b - cU. 

From ( 3 . 4 a )  and ( 3 . 4 d )  we obtain Uc = cU so [c, U ]  = 0 and we write (3 .4)  as 

(3.5a, b )  

(3 .5c)  

Making the special choice c = A 2 1  -;U we are able to eliminate A *  from ( 3 . 5 ~ )  and 
we obtain for the matrix K d v  equation 

where {U,  U,} = VU, + UxU is the anti-commutator of U and U,. Substitution of (3 .6)  
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with the special choice c = A’Z -;U into (3.1) gives: 

So (3.7) is completely integrable when U satisfies (3.6), i.e. (3.7) defines a linear 
prolongation of (3.6). 

Remark. As in the scalar case we may take for the matrix C the choice 
n 

C = Cj(x, t ) A 2 ’  
j = O  

Substitution into ( 3 . 5 ~ )  yields a recurrent system for the coefficients Cj(x,  t )  and one 
obtains finally a matrix Kdv equation of the nth order. The latter equation will not be 
investigated in this paper. 

3.2. Quadratic prolongation and Backlund transformation 

As in the scalar case we can (at least locally) derive another prolongation from (3.7) 
by putting J = yz- l .  Substitution of J = yz-’ into (3.7) yields 

Y X = - J ’ + 2 A J +  U 

9, = -A  ’ J 2  + 4y’UJ + y’( A I - f A U - f U,) (3.8) 

+ ( A  3 I  - f A U - a U,)J + A ’ U - 4 U’ +;A U, + f uxx. 
From this we eliminate U, U, and U,, and we find that J satisfies a A dependent 
modified Kdv equation in matrix form 

(3.9) Jl = -?dJ’, J x } + $ J x x X + i A { J ,  J,}. 
Since (3.8) defines a prolongation of (3.6) we know that if U satisfies the Kdv equation 
(3.6), then 9 defined by (3.8) satisfies the modified Kdv equation (3.9), which is a nice 
generalisation of (2.8). 

To find a Backlund transformation as in the scalar case we will prove that the 
converse is also true. 

Theorem 3. Suppose J satisfies (3.9), then U defined by U = J ,  + J’ - 2AJ  satisfies the 
matrix Kdv equation (3.6). 

ProoJ: Putting J = z + AI we find that z satisfies an equation odd in z 

z t =  -:{z’, Z , } + ~ Z ~ ~ ~ + ~ A ’ Z , = :  Q ( z ) .  

From U = z , + z 2 - A 2 1  it follows that 

U, =z,, + Z Z ,  + z,z = Q ( z ) z +  z Q ( z )  + ( a / d x ) Q ( z )  

and by the definition of Q ( z )  it follows that 

U, = - 2{ U, U,} + f U,,,. 
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Suppose U is a solution of the matrix Kdv equation (3.6), then y’ defined by (3.8) is 
a solution of the modified Kdv equation (3.9) and -y’+2hl is another solution of (3.9) 
and so it follows from theorem 3 that 

U‘= (-i+ 2hZ), + ( -y’+2hZ)2 -2A(-y’ + 2hZ)  

or U’ = -FX + y” - 2Aj  is another solution of the Kdv equation. With the substitution 
U = Fx + y” - 2hy’ we get a Backlund transformation 

U’= -U+2y’2-4A5 (3.10) 

To summarise we have the following theorem 

Theorem 4. Whenever U is a solution of the matrix Kdv equation (3.6) and y’ a solution 
of the system (3.8) then 

U’= - U +2P2 - 4 h j  

is also a solution of the matrix Kdv equation (3.6). 

3.3. Construction of a solution for the matrix K d v  equation 

Since U = 0 is a solution of (3.6), we can find a new solution by using the Backlund 
transformation (3.10) 

U’ = 2F2 - 4Ay’ (3.11) 

where y’ satisfies (3.8) with U = 0, i.e. 

px = - j 2  + 2Aj, yt = - A ~ ~ ’ * + ~ A ~ F .  (3.12) 

We see that j t = A 2 j X  so y’=y’(x+A2t).  
Defining 4(() = y’- A I  with ( = x +  A 2 t  we get for 4(() the first-order equation 

4t = -d2+ A ~ I .  (3.13) 

(3.13) can be linearised by the substitution d = or $, = $4 and we obtain: 

= cclS4 + $dS = $42 + $( - 42 + A I )  

or 

*La = A29. (3.14) 

(3.14) is a set of uncoupled equations and the general solution reads 

= c1 e’c + c 2  e-’< 

with c1  and c 2  arbitrary constant 2 x 2  matrices. However, since 4 = $-’$* is invariant 
under the transformation $ + A$ with A a constant matrix, we may choose $ as 

$ = I eAS + c e-’( 

with 
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From this result we compute the function 4 and we get after a short calculation 

with ( $ 1  = det IC, = e2Af + (det c) e-2At + ( cI1 + c ~ ~ ) .  Written explicitly, the result becomes 

(3.15) 

(3.16) 

Using U'=2y'2-4AF=2(~+AI)2-4A(++AI) = ~ ( I # J ~ - A ' I )  we get after substitution 
of (3.15) and (3.16) finally a solution of the matrix Kdv equation (3.6).  

The result reads as follows 

(3 .17)  

Hence (3.17) is a solution of the system of equations 

U, = - f {  U, U,) + a uxxx 
or written. in components 

Ullr= -~(ullullx+ u12u21x+ UllXU11+ ~ 1 2 x ~ 2 1 ) + a ~ l l x x x  

U,,, = - 3 U ,  1 Ul2X + U12 u 2 2 x  + U1 lXUl2 + U 1 2 X U 2 2 )  + i Ul2XXX 

U21 1 = - 3 U21 U1 1 x + U22 U21 x + U2 1 x U1 1 + u 2 2 x  U2 1 )  + i U21 xxx 

U,,, = --%U21 u 1 2 x +  u22u22x+ u21xu12+ U22xU22)+ifu22xxx. 

(3.18) 

In order to check this result we consider the special solution of (3.18) with U12 = U,, = 0. 
This choice implies that UI1 and U,, satisfy the Kdv equation and according to 

(3.17) we have c I2= c21 = O .  Inserting this into (3.17) we obtain 
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or 

(3.19) 

and in a completely similar way 

(3.20) 

This solution yields for cI1 = exp( -2ha,) and c22 = exp( -2Aa2) the well known soliton 
solutions 

-2A2 -2A2 
cosh2[ A (x  + A 2 t  + a2)] '  u -  U22 = ' 1 - ~ ~ s h 2 [ A ( ~ + A 2 t + a , ) ] '  

(Compare (2.1 1)-(2.12).) 

4. The Boomeron equation 

4.1. A general linear prolongation structure 

The scheme o f  0 3 is easily generalised by considering instead of ( 3 . 1 )  the system 

where A, B, C, a, b, c, y ,  z are 2 x 2  matrix functions defined on R2 with coordinates (x, t ) .  
The compatibility condition gives again fix -Af = [A, E] with 

f ix=(* ) ,  - a x  A,=(*) 
and 

Aa - a A +  Bc-  bC 1 A b +  b A -  Ba - a B  
C a + a C - A c - c A  I A a - a A + C b - c B  

[A, fi] = Afi - fii = 

or written explicitly 

a, -A ,  =[A,  a ]  + Bc - bC, 

c x - c r = { c , a ) - i A , c ) ,  

b, - B, = {A, b )  - { B ,  a>,  

-ax + A, =[A,  a ] +  Cb  - cB. 

(4.2a, b )  

(4.2c, d )  

Differentiating yx again with respect to x yields 

y,, = (A ,  + + B C ) ~  + ( B, +[A, B])z. (4.3) 
Defining a matrix function U by 

(4.4) U = A, + A' + BC + A ~ I  

and by making the special choice 

B, = -[A, B ]  (4.5) 
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we obtain the result 

y,, = ( U  - A21)y .  (4.6) 
Hence the matrix U is a potential for the matrix Schrodinger equation. It is quite 
natural to consider equations, that are solvable by the inverse scattering transformation, 
as have been treated by Calogero and Degasparis (1980). 

In the rest of this paper we restrict ourselves to the Boomeron equation. 

4.2. The linear prolongation structure of the Boomeron equation 

In order to simplify equations (4.2) and (4.4)-(4.5) we make the assumptions 

B = I, c = - ~ ~ - h ~ 1  (4.7) 

and it follows that U = A, and (4.2) becomes 

2[ A, a ]  - [ A 2 ,  b] = 0, 

2a = { A ,  b}, 

A,  = a, - c -i{b,  A’}- h’b, (4.8a, b )  

(4.8c, d )  

Taking b as a constant matrix and after replacing b by 2b we get the following system, 
also used by Martini (1983) 

[A ,  a1 = [A’, bl, a = { A ,  61, (4.9a, b) 

(A’), = -c, - {A’,  a }  - 2A2a -{c, A}. 

A, = {A,,  b}  - { A 2 ,  b }  - 2A’b - C, (4.9c) 

( A 2 ) ,  = -c, - { C, A }  - {A’, a }  - 2h ’a. (4.9d) 

We remark that ( 4 . 9 ~ )  follows from (4.96) and using (4.9b), ( 4 . 9 ~ )  and (4.9d) we 
obtain after a small calculation for the matrix A the equation 

A,, - {A,,, b }  + [A,, [A ,  bll = 0. (4.10) 

It also appears that the system (4.9) is equivalent to the system (4.9b), ( 4 . 9 ~ )  and (4.10). 
If A satisfies equation (4.10) then the following system of equations 

with c = -A, +{A,, b}-{A’, b}-2h2b is completely integrable and hence defines a 
prolongation of equation (4.10) 

Following Martini (1983) one may substitute A = - W + ‘y, b = p and [ y, p ]  = a 
where a, p, y are constant 2 X 2 matrices, and we get the so-called Boomeron equation 

(4.12) W!X = [a, Wxl+ { wxx, P I  +[ wx, [ w, PI]. 

4.3. Quadratic prolongation and Backlund transformation 

From (4.11) we can derive at least locally a quadratic prolongation by substituting 
j = zy-’ which gives 

j ,  = - ( A + ~ ’ ) ’ - A ’ I  
(4.13) 

Equation (4.13) can be transformed into a more convenient form by substituting 

9, = -A,  +{Ax,  b}  - { A 2 ,  b} -2A2b - { { A ,  b}, y’} -2j7bj7. 
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= y’+ A, which gives, after omitting the double tilde 

Y , = - ~ ~ - A ~ I + A ,  

y f  = {A,  - A 2 1 ,  b)+[[A,  61, Y l -  2YbY. 
(4.14) 

As in the case of the matrix Kdv equation, we could try to eliminate A and A, from 
(4.14), but since A is not explicitly given, this would become very tedious. We therefore 
try the following ‘ansatz’: suppose the transformation 

Y + -Y, A+ A’ 

leaves equations (4.10) and (4.14) invariant, then it follows from (4.14) that 

y ,  = -y2  - A ~ I  + A, 

- y ,  = -y2  - A I + A: 
and 

or 
A: -A,  = -2y,. 

Now, if we put A’ = A - 2y  we find after a very straightforward calculation the following 
result. 

Theorem 5. The set of equations 

y ,  = -y2  - A ~ I  + A, 

y ,={Ax - A 2 4  b)+[[A,  bl, yl-2yby 

4, - {A,,, 6) +[A,, [A,  bll = 0 

is invariant under the transformation 

Y ‘ =  -Y, A’= A - 2y. 

So we have found a Backlund transformation 

(4.15) 

(4.10) 

A’= A - 2y  (4.16) 

for equation (4.10), and by substituting A = - W +  y, A‘= - W +  y a Backlund transfor- 
mation 

W’= w + 2 y  (4.17) 

for the Boomeron equation. 

4.4. Construction of a solution for the Boomeron equation 

Since W = 0 is a solution of (4.10), we find a new solution of the Boomeron equation 
by using the Backlund transformation (4.17) and equations (4.15), W = 2 y  where y 
satisfies 

y =-y2-A21 

y f  = - 2 A  ’ b  + [ [ Y ,  bl, Y I  - 2yby 

or, with b = P  a n d [ y , p ] = a  

y,  = - y 2 - A 2  I ,  Y f  =-2A2P+[%Yl-2YPY, W‘=2y. (4.18) 
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To get (4.18) into the form treated by Calogero and Degasparis (1980), we substitute 

a = a'p,, W'= uu,+ c vu, (4.19) 
3 3 3 

I = I  z = l  
P = c b!, 

I = 1  

where uo= (A y )  and U,, i = 1,2,3 are the Pauli matrices given by 

We obtain the result that (4.18) is equivalent to 

U, = - iu2- 'V.  V-2h2 v, = - uv, U, = -2( b'. V) U 
(4.20) 

V, = -4h2$+ 2i( a' X V) - U2b'- (b ' .  V) V+ V X (b' X V) 

where V = (VI,  V,, V3), a'= ( G I ,  E2, i3) and b'= (&, b;, g3). We set a = 2i6, b = 2& and 
using the relation V x ( b  x V) = ( V .  V)b - ( V .  b )  V we find from (4.20) 

U, = -'u2-'V. 2 V-2A2 v, = - uv, (4.21a, b )  

U,  = - b *  VU, V, = U,b + ( a  x V )  + V x ( b  x V). (4.21c, d )  

It follows from (4.21b) that we may take V =  p(x ,  t ) n ( t ) ,  where p(x,  t )  is a scalar 
function and n (  t )  a vector independent of x satisfying n - n = 1. 

We can satisfy (4.21a) and (4.216) by choosing 

p = U+2ih 

so that U satisfies 

U, = -U2-2ihU. (4.22) 

Further it follows from ( 4 . 2 1 ~ )  that 

U, = - b .  n (  U +  2ih) U (4.23) 

and hence U, = b nu,, therefore U = U ( x  - .$( 1)) with .$( t )  satisfying 

. $ , = - b .  N. (4.24) 

We put 17 = x - . $ ( t )  and it follows from (4.22) that 

( U i i h ) ,  = -( U+ih) ' -h2  (4.25) 

and hence 

U(x, t ) =  -p( l - tanhp(x-((1)))  (4.26) 

with p = +ih ; this is the 'soliton' solution as found by Calogero and Degasparis (1980). 
The only unknown to be solved is the vector n (  t ) .  The differential equation to be 

satisfied by this vector follows readily from the equations ( 4 . 2 1 ~ )  and (4.21d). Using 
the relations V = ( U + 2 p ) n  and n x ( b x n ) = ( n . n ) b - ( n . b ) n  we obtain 

n, = a x n + 2 p ( b - ( n .  b ) n ) .  (4.27) 

The equations (4.27) and (4.24) are the same as those given by Calogero and Degasparis 
(1980). For further reductions we refer the reader to this reference. However, in order 
to illustrate the term 'Boomeron' we restrict here our attention to the case a = 76 with 
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T non-zero and real valued. The relation (4.27) yields 

n, = ~b X n + 2p(b - ( n  b)n) 

or 
n, * b = ~ ( b  X n )  * b + 2p[b * b - ( n  - b)’] 

=-2p(n*  b)’+2pb* b. 

Putting n - b = c and b * b = b2 we get the simple differential equation 

dc ld t  = -2pc2+2pb’, 

and the regular solution reads 

c( t )  = b tanh[2pb( t - t o ) ]  

n( t )  b = b tanh[2pb(t - t o ) ]  

and so 
(4.28) 

with to an integration constant. This relation describes the so-called polarisation of 
the solution. 

We then obtain with the aid of (4.24) the wave velocity, appearing in the function 

(4.29) 

Taking A purely imaginary with, for example, Im A < 0, we have p > 0 and the wave 
speed is positive for t < to and negative for t > to, which explains the name of the 
‘Boomeron’ equation. 

Finally, we remark that this wave speed assumes asymptotic values * b for t + r CO. 

V(x, 2 )  

6, = -b tanh[2pb( t - to) ] .  

5. Conclusion 

It has been shown, using the example of a K d v  type system of equations and the 
Boomeron equation, that a simple reformulation of the prolongation condition, in 
terms of the integrability condition of a linear system of equations, can lead to a very 
straightforward determination of a prolongation structure, a Backlund transformation 
and hence the construction of solutions. 

Although we have only treated the case of 2 X 2  matrices, the method can easily be 
generalised to N x N matrix systems of equations. The use of exterior differential 
systems is a powerful method for deriving more general prolongation structures, but 
it has the disadvantage that in the case of systems of nonlinear evolution equations 
one is forced to make very long and tedious calculations. As to this it may be of 
importance to use formula manipulation (see Gragert 1981). 
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